The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

نویسندگان

  • Zhen Wang
  • Jianzhu Ju
  • Junsheng Yang
  • Zhe Ma
  • Dong Liu
  • Kunpeng Cui
  • Haoran Yang
  • Jiarui Chang
  • Ningdong Huang
  • Liangbin Li
چکیده

Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation on non-isothermal crystallization behavior and morphology of polyamide 6/ poly(ethylene-co-1-butene)-graft-maleic anhydride/organoclay nanocomposites

Nanocomposites based on polyamide 6 (PA6) and poly(ethylene-co-1-butene)-graft-maleic anhydride (EB-g- MAH) blends have been prepared via melt mixing. The effect of blend ratio and organoclay concentration on the crystallization and melting behavior of specimens were studied. Three types of commercial organo-modified clay (Cloisite 30B, Cloisite 15A and Cloisite 20A) were employed to assess the...

متن کامل

Design of Optimal Process Flowsheet for Fractional Crystallization Separation Process

A procedure is presented that synthesizes fractional crystallization separation processes to obtain pure solids from multi-component solutions. The method includes a procedure to generate a network flow model to identify alternative process designs for fractional crystallization. The main advantage of this systematic procedure with respect to other reported procedures is using non-equilibri...

متن کامل

Isothermal Melt Crystallization Kinetic Behavior of Poly (vinylidene fluoride)

Isothermal melt crystallization kinetics of PVDF was investigated by differential scanning calorimetry. Thin PVDF film has been fabricated by the solvent casting technique using dimethylformamide (DMF). Then, the samples were melted and subsequently crystallized in the range of the crystallization temperature (Tc) between 138 and 145 °C. The crystallization kinetics was derived from Avrami equa...

متن کامل

The mechanical and thermal properties of PE/CNC nanocomposite

Polyethylene (PE) nanocomposites containing Cellulose Nano Crystal (CNC) were prepared via melt blending in a twin screw extruder. The evaluation of PE/CNC nanocomposites was studied for food packaging applications. The nanocomposites were investigated by thermal, mechanical analyses. Addition of CNC particle while having no effect on melting and crystallization temperature had intensive effect...

متن کامل

The mechanical and thermal properties of PE/CNC nanocomposite

Polyethylene (PE) nanocomposites containing Cellulose Nano Crystal (CNC) were prepared via melt blending in a twin screw extruder. The evaluation of PE/CNC nanocomposites was studied for food packaging applications. The nanocomposites were investigated by thermal, mechanical analyses. Addition of CNC particle while having no effect on melting and crystallization temperature had intensive effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016